Montag, Juli 21, 2008
ICE3: Radsatzwelle von aussen beschädigt
Die Radsatzwelle ist nach Angaben der Bahn von aussen beschädigt gewesen - dürfte nach meiner Meinung bei einem Bruch immer der Fall sein. (afp)
Bei einer Radsatzwelle beginnt der Riss meistens bei einer Beschädigung an der Aussenseite und wächst nach Innen. Allfällige Lunker würden das Risswachstum fördern, deshalb sind sie auch so gefährlich. Ich denke aber, dass diese bereits bei der Herstellung entdeckt worden wären und in diesem Fall die betroffene Welle gar nie zum Einsatz gekommen wäre.
Beschädigungen durch fliegende Fremdkörper im Besonderen Schottersteine sind typische Ansatzpunkte für die Rissbildung. In Schweden wurde an den X2000 Zügen spezielle Kunstoffbeschichtungen aufgetragen. Zumindest bei den ersten Versionen führten Beschädigungen der Beschichtung dazu, dass Wasser zwischen Beschichtung und Radsatzwelle gelangte und dort Korrosionsschäden verursachte, welche wiederum Ausgangspunkte für Risse waren.
Schottersteinen beginnen bei Geschwindigkeiten über 300 km/h zu fliegen. Die Steine werden nicht durch den Luftzug der vorbeifahrenden Züge hochgehoben, sondern durch die bei hohen Geschwindigkeiten nur sehr kurze Einfederung des Oberbaus. Dieser sehr steile Impuls bewirkt, dass die Schottersteine hochgehoben werden.
Der Effekt lässt sich am ehesten mit Biergläsern auf einem Gartentisch veranschaulichen: drückt man langsam auf den Gartentisch und lässt langsam wieder los, passiert nichts; schlägt man auf den Gartentisch, fliegen die Biergläser in die Luft.
Die ICE3, welche nach Frankreich fahren, sind zum Schutz gegen die fliegenden Schottersteine auf der Unterseite verkleidet, so dass die Steine nicht an die Radsatzwelle gelangen können. Dies war nötig weil in Frankreich die Hochgeschwindigkeitsstrecken bis zur Schwellenoberkante eingeschottert sind. Zumindest am Anfang verkehrten die Züge ohne dieser Verkleidung auf den deutschen Hochgeschwindigkeitsstrecken in der Annahme, dass keine Schottersteine die Radsatzwellen beschädigen können, wenn der Schotter nur bis maximal 4 cm unter der Schwellenoberfläche liegt.
Im Spiegel ist ein Artikel mit den Äusserungen von Vatroslav Grubisic erschienen,der ein Versagen schon lange befürchtet hat - allerdings nicht wegen Materialfehlern, sondern wegen ungenügender Dimensionierung. (SPON)
Die Normenlage bezüglich Radsatzwellen ist übrigens wie folgt:
EN13103 (Ausgabe 2001) beschreibt die Berechnung der Radsatzwelle von Laufradsätzen
EN13104 (Ausgabe 2001) beschreibt die Berechnung der Radsatzwelle von Triebradsätzen
EN13260 (Ausgabe 2006) beschreibt die Toleranzen und Prüfung von Radsätzen
EN13261 (Ausgabe 2006) beschreibt die Toleranzen und Prüfung von Radsatzwellen
Aus meiner Sicht ist wichtig, dass der Unfall in Köln richtig untersucht wird und daraus die richtigen Lehren gezogen werden. Bei jeder technischen Entwicklung muss kann es vorkommen, dass frühere Schritte nochmals überdacht werden müssen.
Bei einer Radsatzwelle beginnt der Riss meistens bei einer Beschädigung an der Aussenseite und wächst nach Innen. Allfällige Lunker würden das Risswachstum fördern, deshalb sind sie auch so gefährlich. Ich denke aber, dass diese bereits bei der Herstellung entdeckt worden wären und in diesem Fall die betroffene Welle gar nie zum Einsatz gekommen wäre.
Beschädigungen durch fliegende Fremdkörper im Besonderen Schottersteine sind typische Ansatzpunkte für die Rissbildung. In Schweden wurde an den X2000 Zügen spezielle Kunstoffbeschichtungen aufgetragen. Zumindest bei den ersten Versionen führten Beschädigungen der Beschichtung dazu, dass Wasser zwischen Beschichtung und Radsatzwelle gelangte und dort Korrosionsschäden verursachte, welche wiederum Ausgangspunkte für Risse waren.
Schottersteinen beginnen bei Geschwindigkeiten über 300 km/h zu fliegen. Die Steine werden nicht durch den Luftzug der vorbeifahrenden Züge hochgehoben, sondern durch die bei hohen Geschwindigkeiten nur sehr kurze Einfederung des Oberbaus. Dieser sehr steile Impuls bewirkt, dass die Schottersteine hochgehoben werden.
Der Effekt lässt sich am ehesten mit Biergläsern auf einem Gartentisch veranschaulichen: drückt man langsam auf den Gartentisch und lässt langsam wieder los, passiert nichts; schlägt man auf den Gartentisch, fliegen die Biergläser in die Luft.
Die ICE3, welche nach Frankreich fahren, sind zum Schutz gegen die fliegenden Schottersteine auf der Unterseite verkleidet, so dass die Steine nicht an die Radsatzwelle gelangen können. Dies war nötig weil in Frankreich die Hochgeschwindigkeitsstrecken bis zur Schwellenoberkante eingeschottert sind. Zumindest am Anfang verkehrten die Züge ohne dieser Verkleidung auf den deutschen Hochgeschwindigkeitsstrecken in der Annahme, dass keine Schottersteine die Radsatzwellen beschädigen können, wenn der Schotter nur bis maximal 4 cm unter der Schwellenoberfläche liegt.
Im Spiegel ist ein Artikel mit den Äusserungen von Vatroslav Grubisic erschienen,der ein Versagen schon lange befürchtet hat - allerdings nicht wegen Materialfehlern, sondern wegen ungenügender Dimensionierung. (SPON)
Die Normenlage bezüglich Radsatzwellen ist übrigens wie folgt:
EN13103 (Ausgabe 2001) beschreibt die Berechnung der Radsatzwelle von Laufradsätzen
EN13104 (Ausgabe 2001) beschreibt die Berechnung der Radsatzwelle von Triebradsätzen
EN13260 (Ausgabe 2006) beschreibt die Toleranzen und Prüfung von Radsätzen
EN13261 (Ausgabe 2006) beschreibt die Toleranzen und Prüfung von Radsatzwellen
Aus meiner Sicht ist wichtig, dass der Unfall in Köln richtig untersucht wird und daraus die richtigen Lehren gezogen werden. Bei jeder technischen Entwicklung muss kann es vorkommen, dass frühere Schritte nochmals überdacht werden müssen.
Labels: Hochgeschwindigkeitszug, ICE3, Radsatzwelle
Comments:
<< Home
bezüglich der Normen stellt sich das Problem, daß diese viel älter sind als das Konzept Hochgeschwindigkeitszug, ICE 3 oder gar Neigetechnik. Daher können diese auch noch so gut erfüllt werden, für solche Züge sind sie bei Fachleuten ungeeignet.
Der angebliche Gewaltbruch kann unter solchen oder viel härteren Umständen nur vorkommen, wenn die Welle schon zu deutlich über 50% durchgerissen war.
Wenn eine einzelne Welle so stark gerissen war, hat diese entweder ein Fertigungsproblem oder einen vorhergehenden Unfall erlebt - oder viele der anderen müssen (!!!) auch zumindest Anrisse aufweisen (die mit der Zeit wachsen werden). Ultraschall gilt als nicht sichere Methode.
Der angebliche Gewaltbruch kann unter solchen oder viel härteren Umständen nur vorkommen, wenn die Welle schon zu deutlich über 50% durchgerissen war.
Wenn eine einzelne Welle so stark gerissen war, hat diese entweder ein Fertigungsproblem oder einen vorhergehenden Unfall erlebt - oder viele der anderen müssen (!!!) auch zumindest Anrisse aufweisen (die mit der Zeit wachsen werden). Ultraschall gilt als nicht sichere Methode.
@kusito: Ich denke nicht an Lunker, gehe eher von einer Beschädigung aus. Habe den Hauptartikel ausgedehnt.
@Anonym(wer traut sich dann hier nicht zu sagen, wer er ist)
Deine Aussagen bezüglich Normen sind falsch. Diese werden laufend dem Stand der Technik angepasst. Ich habe im Hauptartikel die Ausgabedaten angefügt
Es ist die Frage, ob die Bahn ihre Fahrzeuge auch den Normen anpasst. Bis heute kann das EBA nämlich nur in den seltensten Fällen verlangen, dass Fahrzeuge rückwirkend an die Normen angepasst werden.
Kommentar veröffentlichen
@Anonym(wer traut sich dann hier nicht zu sagen, wer er ist)
Deine Aussagen bezüglich Normen sind falsch. Diese werden laufend dem Stand der Technik angepasst. Ich habe im Hauptartikel die Ausgabedaten angefügt
Es ist die Frage, ob die Bahn ihre Fahrzeuge auch den Normen anpasst. Bis heute kann das EBA nämlich nur in den seltensten Fällen verlangen, dass Fahrzeuge rückwirkend an die Normen angepasst werden.
<< Home